3,045 research outputs found

    1966 Clinic Yearbook

    Get PDF
    The Clinic is the yearbook of the Sidney Kimmel Medical College (formerly Jefferson Medical College) at Thomas Jefferson University

    Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution

    Get PDF
    Metaiodobenzylguanidine (MIBG) is an enzymatically stable synthetic analog of norepinephrine that when radiolabled with diagnostic ((123)I) or therapeutic ((131)I) isotopes has been shown to concentrate highly in sympathetically innervated tissues such as the heart and neuroendocrine tumors that possesses high levels of norepinephrine transporter (NET). As the transport of MIBG by NET is a saturable event, the specific activity of the preparation may have dramatic effects on both the efficacy and safety of the radiodiagnostic/radiotherapeutic. Using a solid labeling approach (Ultratrace), noncarrier-added radiolabeled MIBG can be efficiently produced. In this study, specific activities of >1200 mCi/micromol for (123)I and >1600 mCi/micromol for (131)I have been achieved. A series of studies were performed to assess the impact of cold carrier MIBG on the tissue distribution of (123/131)I-MIBG in the conscious rat and on cardiovascular parameters in the conscious instrumented dog. The present series of studies demonstrated that the carrier-free Ultratrace MIBG radiolabeled with either (123)I or (131)I exhibited similar tissue distribution to the carrier-added radiolabeled MIBG in all nontarget tissues. In tissues that express NETs, the higher the specific activity of the preparation the greater will be the radiopharmaceutical uptake. This was reflected by greater efficacy in the mouse neuroblastoma SK-N-BE(2c) xenograft model and less appreciable cardiovascular side-effects in dogs when the high-specific-activity radiopharmaceutical was used. The increased uptake and retention of Ultratrace (123/131)I-MIBG may translate into a superior diagnostic and therapeutic potential. Lastly, care must be taken when administering therapeutic doses of the current carrier-added (131)I-MIBG because of its potential to cause adverse cardiovascular side-effects, nausea, and vomiting

    An algebraic interpretation of the Wheeler-DeWitt equation

    Get PDF
    We make a direct connection between the construction of three dimensional topological state sums from tensor categories and three dimensional quantum gravity by noting that the discrete version of the Wheeler-DeWitt equation is exactly the pentagon for the associator of the tensor category, the Biedenharn-Elliott identity. A crucial role is played by an asymptotic formula relating 6j-symbols to rotation matrices given by Edmonds.Comment: 10 pages, amstex, uses epsf.tex. New version has improved presentatio

    Identifying Priority Species and Conservation Opportunities Under Future Climate Scenarios: Amphibians in a Biodiversity Hotspot

    Get PDF
    Climate change is driving shifts in the distribution of plants and animals, and prioritizing management actions for such shifts is a necessary but technically difficult challenge. We worked with state agencies in the southeastern United States to identify high-priority amphibian species, to model the vulnerabilities of those species to regional climate change, and to identify long-term climatic refugia within the context of existing conservation lands. Directly interfacing with state natural resource experts ensured that 1) species prioritization schemes extend beyond political boundaries and 2) our models resulted in conservation-relevant applications. We used a correlative model to project midcentury distributions of suitable climate for priority species and to evaluate each species\u27 vulnerability to climate change. Using spatially explicit projected climate distributions, we ranked existing protected areas relative to their ability to provide climatic refugia for priority species in 2050. We identified 21 species as regional high-priority species. Fifteen of the 21 species are forecast to lose more than 85% of their climatically suitable habitat. Regions in the Appalachian Mountains, the Florida Panhandle, and the north-central region of Alabama are projected to lose the most climatic habitat for priority amphibian species. We identified many existing protected areas as midcentury climatic refugia in the Appalachians; however, our projections indicated refugia in the Southeast Coastal Plain to be exceedingly scarce. Although the topographic relief present in the Appalachians appears to provide future conservation opportunities via climatic refugia, the Coastal Plain affords fewer such opportunities and conservation of amphibians in that region is likely to be more challenging. The approach outlined here could be applied across a broad range of taxa and regions

    Phase Conjugation and Negative Refraction Using Nonlinear Active Metamaterials

    Full text link
    We present experimental demonstration of phase conjugation using nonlinear metamaterial elements. Active split-ring resonators loaded with varactor diodes are demonstrated theoretically to act as phase-conjugating or time-reversing discrete elements when parametrically pumped and illuminated with appropriate frequencies. The metamaterial elements were fabricated and shown experimentally to produce a time reversed signal. Measurements confirm that a discrete array of phase-conjugating elements act as a negatively-refracting time reversal RF lens only 0.12λ\lambda thick

    Non-commutative geometry and the standard model vacuum

    Full text link
    The space of Dirac operators for the Connes-Chamseddine spectral action for the standard model of particle physics coupled to gravity is studied. The model is extended by including right-handed neutrino states, and the S0-reality axiom is not assumed. The possibility of allowing more general fluctuations than the inner fluctuations of the vacuum is proposed. The maximal case of all possible fluctuations is studied by considering the equations of motion for the vacuum. Whilst there are interesting non-trivial vacua with Majorana-like mass terms for the leptons, the conclusion is that the equations are too restrictive to allow solutions with the standard model mass matrix.Comment: 21 pages. v2: some comments improve

    Single system image: A survey

    Get PDF
    Single system image is a computing paradigm where a number of distributed computing resources are aggregated and presented via an interface that maintains the illusion of interaction with a single system. This approach encompasses decades of research using a broad variety of techniques at varying levels of abstraction, from custom hardware and distributed hypervisors to specialized operating system kernels and user-level tools. Existing classification schemes for SSI technologies are reviewed, and an updated classification scheme is proposed. A survey of implementation techniques is provided along with relevant examples. Notable deployments are examined and insights gained from hands-on experience are summarized. Issues affecting the adoption of kernel-level SSI are identified and discussed in the context of technology adoption literature

    Barrett-Crane spin foam model from generalized BF-type action for gravity

    Get PDF
    We study a generalized action for gravity as a constrained BF theory, and its relationship with the Plebanski action. We analyse the discretization of the constraints and the spin foam quantization of the theory, showing that it leads naturally to the Barrett-Crane spin foam model for quantum gravity. Our analysis holds true in both the Euclidean and Lorentzian formulation.Comment: 15 pages, revtex; a sign corrected (area spectrum); some of these results were presented in a preliminary form in gr-qc/0103081; v2: improved presentation of the results, some changes in the text; to appear in Phys. Rev.

    Asymptotics of 10j symbols

    Full text link
    The Riemannian 10j symbols are spin networks that assign an amplitude to each 4-simplex in the Barrett-Crane model of Riemannian quantum gravity. This amplitude is a function of the areas of the 10 faces of the 4-simplex, and Barrett and Williams have shown that one contribution to its asymptotics comes from the Regge action for all non-degenerate 4-simplices with the specified face areas. However, we show numerically that the dominant contribution comes from degenerate 4-simplices. As a consequence, one can compute the asymptotics of the Riemannian 10j symbols by evaluating a `degenerate spin network', where the rotation group SO(4) is replaced by the Euclidean group of isometries of R^3. We conjecture formulas for the asymptotics of a large class of Riemannian and Lorentzian spin networks in terms of these degenerate spin networks, and check these formulas in some special cases. Among other things, this conjecture implies that the Lorentzian 10j symbols are asymptotic to 1/16 times the Riemannian ones.Comment: 25 pages LaTeX with 8 encapsulated Postscript figures. v2 has various clarifications and better page breaks. v3 is the final version, to appear in Classical and Quantum Gravity, and has a few minor corrections and additional reference
    • 

    corecore